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A B S T R A C T

Phenotyping based on the estimation of plant traits such as the leaf area index (LAI) could aid the identification 
and monitoring of the sweet potato health, growth status and gross primary productivity. Integrating radiative 
transfer models (RTMs), active learning algorithms and non-parametric regression methods using unmanned 
aerial vehicle (UAV) multispectral imagery have the potential for accurately estimating LAI across multiple crop 
varieties at varying growth stages. This study tested the boosted regression trees (BRT) and kernel ridge 
regression (KRR) for inversion of the PROSAIL RTM to retrieve LAI across 20 sweet potato varieties during peak 
growth stage. Furthermore, the study attempted to constrain the inversion process by using active learning (AL) 
techniques which ensured the selection of informative samples from a pool of RTM simulations. Results show 
that the most accurate LAI retrieval over the heterogeneous sweet potato canopy was achieved by integrating 
smaller PROSAIL simulations with the random sampling AL and KRR methods. The LAI retrieval accuracy had a 
coefficient of determination (R2) of 0.52, root mean squared error (RMSE) of 0.88 m2.m-2 and relative RMSE of 
12.23 %. However, the BRT performance in-comparison to KRR, captured more spatial variability of observed 
LAI with a better prediction accuracy across the 20 sweet potato varieties. The hybrid approach developed in this 
study, show potential for accurate phenotyping of LAI dynamics across multiple sweet potato varieties during a 
matured growth stage. These findings have significant implications for sweet potato breeding programmes that 
are critical for developing new cultivars in South Africa.

1. Introduction

Sweet potato (Ipomoea batatas L.) is an essential crop that has the 
potential to address malnutrition and guarantee food security in 
vulnerable populations who are at an increased risk of adverse hunger. 
Sweet potato has been identified as a crop that is globally underutilized 
for food security and sustainable rural development, despite its high 
nutritional value in comparison to staple crops such as maize and wheat 
[41,53]. In particular, smallholder farmers play a critical role in the 
establishment of formal and informal markets which are accessible to 
consumers [34,41,53]. This potentially leads to an increase in the con
sumption of sweet potato and thus necessitates higher production. 

Precision agriculture will ensure that productivity is increased in an 
efficient and effective way.

The estimation of vegetation biophysical variables such as leaf area 
index (LAI) and leaf chlorophyll concentration (LCC) could assist 
farmers in assessing and monitoring crops at different stages [35,61]. In 
particular, the LAI, defined as the one-sided leaf area per unit of hori
zontal surface area Jonckheere et al. [29] is an important indicator of 
plant canopy structure and growth, and also forms an essential input in 
climate models to determine ecosystem productivity. For example, 
studies have shown that LAI can be used as a proxy for understanding 
the morphological and/or physiological characteristics of crop cultivars 
at different growth stages [7]. Another study found LAI to be a key 
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parameter in explaining how the variation in soil moisture and water 
depth influence the growth performance of sweet potato [33]. 
Furthermore, LAI is a good indicator of above-ground growth which 
reportedly has a direct influence in crop yield below the ground [32]. 
Accurate measurements of LAI can provide an indirect measure of the 
crop nutrient status in different growth stages and environments.

Unmanned aerial vehicle (UAV) remote sensing provides an alter
native approach to destructive, expensive and time-consuming field 
campaigns. This approach can provide imagery at very high (cm-level) 
spatial resolution and flexible temporal resolutions, making it ideal for 
mapping and monitoring crop biophysical variables such as LAI, 
particularly in breeding and field trial plots [35]. The estimation of 
vegetation biophysical variables from remote sensing data, is carried out 
using three approaches, namely the parametric, non-parametric and 
radiative transfer models (RTMs). Parametric and non-parametric sta
tistical approaches are not always robust and require a lot of in situ data, 
but site, season and data specific. Compared to the two former empirical 
approaches, RTMs have minimum reliance on in-situ data in that, they 
use the physical laws to accurately describe the spectral variation of 
canopy reflectance as a function of viewing and illumination geometry, 
leaf, canopy and soil background characteristics [25].

Numerous studies have explored the integrated use of RTMs with 
machine learning algorithms on UAV imagery for the estimation of crop 
biophysical variables [6,18,28,35]. However, these studies mainly 
focused on crops such as maize, wheat, sugar beet, potato and sunflower, 
with each crop having either a single cultivar or very few cultivars 
(varieties). There are fewer emerging studies based on empirical or 
statistical modelling approaches using LAI as a proxy for understanding 
the morphological and/or physiological characteristics of the sweet 
potato varieties at different growth stages [33,46]. Furthermore, there is 
a notable steady increase in studies that use empirical approaches to 
model sweet potato yield estimates and also to explore how external 
variables affect the shape and size properties of sweet potato, as these 
are important in determining grade and monetary value [1,3,32,36,54,
55]. Based on reviewed literature thus far, the current study is the first to 
explore the integrated use of RTMs with machine learning and active 
learning (AL) algorithms on UAV imagery for the estimation of LAI over 
a heterogeneous sweet potato canopy comprising 20 varieties.

A major challenge with using RTM data is that it may contain 
redundant or non-diverse samples which do not improve on the pre
diction accuracy of the resulting regression model [59]. One of the ways 
in addressing this limitation is through the use of AL sample selection 
algorithms to: (i) disregard the non-diverse samples from the pool of 
RTM-simulated reflectance samples, and (ii) optimise the simulated 
training dataset to contain only intelligent or informative samples 
needed for improving the regression model’s retrieval accuracy [43].

The aim of this study was to explore the hybrid model of integrating 
PROSAIL simulated reflectance samples with two non-parametric 
regression methods using UAV multispectral imagery, to estimate LAI 
over 20 sweet potato varieties at a matured growth stage. The specific 
objectives of this study were to: (i) generate different PROSAIL data
bases containing varying simulated canopy reflectance (training) sam
ples to determine their influence on model estimation accuracy (ii) 
apply several AL sample selection algorithms to eliminate redundant 
samples from each database, and (iii) compare the performance of 
kernel ridge regression (KRR) and boosted regression trees (BRT) for the 
retrieval of LAI. This study has significant implications for: (i) sweet 
potato breeding programmes critical for developing new cultivars in 
South Africa and (ii) small to large scale farmers in obtaining accurate 
maps of sweet potato LAI, which are essential for assessing and moni
toring crop growth at different stages.

2. Study area

The study site is based on a small trial plot covering an area of about 
500 m2 located between 28◦15′36.07″E, 25◦44′59.43″S and 

28◦15′37.39″E, 25◦44′59.83"S at the experimental farm of the University 
of Pretoria, South Africa (Fig. 1). The Roodeplaat Vegetable, Industrial 
and Medicinal Plants (RVIMP) institute of the Agricultural Research 
Council (ARC) in South Africa has been involved in sweet potato 
breeding for >70 years, and currently 33 sweet potato cultivars have 
been developed in South Africa. In particular, sweet potato breeding 
programme at RVIMP-ARC aims to evaluate a new set of sweet potato 
varieties for stress adaptation, growth performance and productivity. 
This evaluation exercise is critical for developing new sweet potato 
cultivars in South Africa.

In this study, there were 20 unique sweet potato varieties and three 
replicates of each variety, comprising a total of 20 × 3 = 60 varieties 
planted in the field (Table 1). The geographic coordinates of each plot 
linked to specific varieties shown in yellow dots in Fig. 1(C) were 
recorded using the Global Navigation Satellite System – Real Time Ki
nematic (GNSS-RTK) method [49].

Furthermore, the study site (Fig. 1) is characterised by a relatively 
flat terrain and falls within the summer rainfall region of South Africa. 
During the period of the sweet potato trials from planting date (28 
January 2024) until peak growth stage (in late May 2024), the study site 
received monthly average rainfall in the range 175 mm – 10 mm coupled 
with monthly average temperature in the range 21.5 ◦C – 18.5 ◦C 
(Fig. 2). The observed decline in rainfall and temperature toward peak 
growth stage is due to seasonal changes from summer to the beginning of 
winter. The rainfall and temperature estimates shown in Fig. 2 were 
obtained from the Climate Hazards Group InfraRed Precipitation with 
Station data (CHIRPS) dataset [45] and ERA5-Land dataset [42], 
respectively.

3. Material and methods

3.1. Data used

3.1.1. Description of LAI field measurements
Since planting on 28 January 2024, the LAI and LCC field mea

surements of the sweet potato varieties were taken from 24 February to 
27 May 2024 at approximately 30-day intervals spanning early growing 
to the matured stages (Table 2). In particular, the LAI measurements 
were taken using the LI-COR LAI-2200C Plant Canopy Analyzer [10] 
under clear skies from late morning hours at about 11:00 until early 
afternoon at around 13:00 in-order to minimize variations of the sun 
zenith angle in all the plots. A 180◦ view cap was applied to the 
LAI-2200C to block the azimuthal field of view of the operator. Each plot 
had a dimension of 2.1 m x 6 m and thus, the 20 unique sweet potato 
varieties with three replicates of each (comprising a total of 20 × 3 = 60 
varieties) were distributed across 60 plots.

In each plot, the LAI-2200C instrument was used to record the 
incident photosynthetically active radiation (PAR; 400–700 nm) above 
the sweet potato canopy, followed by multiple recordings of the below 
sweet potato canopy PAR in-order to calculate the average LAI per plot 
(Table 2). Furthermore, LCC field measurements of 10 randomly 
selected leaves of the sweet potato were taken using the SPAD 502 Plus 
chlorophyll meter, and averaged into single value representing the LCC 
per plot. The SPAD unitless LCC values across the 60 plots were con
verted into µg.cm-2 by applying an empirical calibration method 
described in Cerovic et al. [4]. In this study, both LAI and LCC mea
surements for the peak growth stage (27 May 2024) were used for 
parameterising the models and evaluating their performance.

3.1.2. UAV imagery and pre-processing
The DJI Matrice 300 RTK drone mounted with a Micasense RedEdge- 

P camera and Downwelling Light Sensor 2 (DLS-2) was used to acquire 
multispectral imagery at nadir of the sweet potato field on 24 February, 
29 March, 24 April and 27 May 2024 (Fig. 3). The Micasense RedEdge-P 
camera has five multispectral bands (i.e. blue 475 nm, green 560 nm, red 
668 nm, red-edge 717 nm and near-infrared 842 nm) and one 
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panchromatic band (not used in this study). The camera has a resolution 
of 1456 × 1088 (i.e. 1.58 megapixels per multispectral band) coupled 
with a horizontal and vertical field of view of 49.6◦ x 38.3◦ respectively. 
In this study, it was flown at an altitude of 30 m above ground level 
(AGL) covering a ground sampling distance (GSD) of 1.9 cm per pixel. 
The AGL used and GSD achieved, were considered to be ideal for 
capturing the finer details of the sweet potato growth stages i.e. from 
seedling, vegetative and all the way to matured stages.

Prior every flight, the UAV was connected to the DJI d-RTK 2 Mobile 
Station (https://www.dji.com/global/d-rtk-2/info) which provides the 
UAV with real-time differential corrections for generating centimeter- 
level positioning data. The UAV flights were conducted on clear-sky 
days, and strictly between 11:30 a.m. and 12:30 pm. which was 
considered the ideal time when there is minimal shadow effect and 
optimal solar irradiance. Images of the MicaSense Calibrated Reflec
tance Panel (CRP) were taken using the multispectral camera before and 

after every UAV flight. These images were later used in Agisoft Meta
shape software (version 2.0.0) to calibrate the reflectance of the multi
spectral data (Fig. 4). These steps are consistent with the Agisoft 
Metashape image calibration method that uses a single calibration panel 
such as the CRP [9]. It has been reported in Daniels et al. [9] that the 
image calibration method embedded in commercial software packages 
such as Agisoft and Pix4D Fields, has easier or less complicated processes 
to convert raw image into usable reflectance maps with sufficient ac
curacy (particularly in clear-sky conditions) comparable to other so
phisticated calibration methods such as the empirical line method using 
multiple reference targets [39].

The mean spectral reflectance of the 20 sweet potato varieties was 
computed from the drone reflectance image (Fig. 4). Each spectral curve 
represents the average spectra from the three replicates of each sweet 
potato variety. The spectral profile is more characteristic of a greener 
and healthy sweet potato canopy. Although, the observed spectral 
variability may be an indication of the heterogeneity of the sweet potato 
canopy across the plots, due to for example, different varieties coupled 
with their associated biophysical (leaf structure, area, coverage and 
chlorophyll) and biochemical (leaf water and nitrogen content) prop
erties at a leaf-level.

3.2. Methods used

3.2.1. Schematic workflow
Fig. 5 show a schematic workflow summarizing the various phases of 

the methodology that were implemented in this study. These phases are 
discussed in subsequent sections of the paper.

3.2.2. PROSAIL model parameterization and simulated spectra
The PROSPECT and SAIL (hereafter PROSAIL) RTM models [25] are 

available to the public in a toolbox named Automated Radiative Transfer 
Models Operator (ARTMO) (https://artmotoolbox.com/). The toolbox 
was developed and runs in Matlab. In this study, PROSAIL in ARTMO 
was used to generate databases of synthetic (simulated) reflectance 
samples of the sweet potato varieties, based on a combination of adopted 
and site-

During parameterisation, the range values for LCC and LAI were 

Fig. 1. Study area map showing the South African provincial boundaries (A), a true colour drone composite image of the 20 sweet potato varieties per highlighted 
row with three replicates, captured at 90 days after planting (B), and a true colour drone composite image captured at matured stage (120 days after planting). The 
yellow labels or dots indicate centre locations of all varieties recorded by use of a high precision GNSS system. The labels shown on the image (C) represents the 
varieties shown in Table 1.

Table 1 
GPS labels in Fig. 1(C) and their corresponding sweet potato variety code.

No. Field Label Variety

1 UP 1, 45, 54 NC51–6
2 UP 2, 47, 58 Evangeline
3 UP 3, 23, 50 199062.1
4 UP 4, 8, 41 2004–9–2 (ARC-SP-2)
5 UP 5, 21, 44 NC55–2
6 UP 6, 25, 46 Blesbok
7 UP 7, 33, 53 Bophelo
8 UP 9, 35, 37 NC-–51–15 (ARC-SP-12)
9 UP 10, 30, 56 Ndou
10 UP 11, 20, 34 Monate
11 UP 12, 14, 52 NC51–1 (ARC-SP-11)
12 UP 13, 39, 59 2008–12–4 (ARC-SP-5)
13 UP 15, 38, 60 Beauregard
14 UP 16, 36, 55 2014–13–1 (ARC-SP-6)
15 UP 17, 40, 49 2014–7–3 (ARC-SP-7)
16 UP 18, 22, 26 2014–14–5 (ARC-SP-8)
17 UP 19, 24, 57 2010–15–2 (ARC-SP-10)
18 UP 27, 42, 43 Khumo
19 UP 29, 32, 51 FS10–25
20 UP 28, 31, 48 2015–2–1
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based on actual field measurements; whereas the range values for N and 
ratio of diffuse to downward irradiance were based on literature [24,
56]. In this study, for the leaf structure parameter N, given that sweet 
potato is a dicotyledonous plant and also that the sweet potato leaves 
were non-senescent (at 120 days), we relied on the study by Jacque
moud and Baret [24] that recommended N values between 1.5 and 2.5 
for a plant that has a dicotyledon leaf type. The dry matter content was 
measured in the lab by considering the difference between the original 
and dry weights of the sweet potato leaves. The EWT was estimated 
using the expression in Féret et al. [19] which computes the difference 
between leaf fresh mass (FW) and leaf dry mass (DW) divided by the leaf 
area (A). EWT was estimated based on measurements obtained from 
nine randomly selected sweet potato varieties (namely, Evangeline, 
NC55–2, Blesbok, Bophelo, Ndou, Monate, Beauregard, FS10–25 and 

Khumo (Table 1)) and it was found that the EWT ranged from 0.023 to 
0.044 g/cm2 with an average of 0.03 g/cm2. Hence, a fixed EWT value of 
0.03 g/cm2 was used for parameterisation (Table 3).

Furthermore, the hot-spot parameter, which represents the peak 
backscatter when the sun is directly behind the sensor [15,31] was 
computed by taking the ratio of field-measured sweet potato leaf area (in 
cm) to the canopy height (in cm) per plot and variety. The soil brightness 
coefficient was estimated from the UAV multispectral bands i.e. red and 
green bands, using the soil brightness index equation described in 
Marques et al. [40]. The sun-sensor geometrical parameters such as the 
solar zenith and sensor observation angles were determined during UAV 
flight time.

Fig. 2. Monthly average precipitation and temperature at the experimental farm of the University of Pretoria for the period 2024.

Table 2 
Summary statistics of the field-measured biophysical variables of LCC (µg.cm-2) and LAI (m2.m-2) of 20 sweet potato varieties planted in 60 plots or compartments 
within the field. StDev denotes the standard deviation.

Date Variable Samples Min. Max. Mean Median StDev

24 February 2024 LCC 60 36.64 75.07 52.74 51.70 8.74
LAI 60 1.52 4.11 2.62 2.53 0.53

26 March2024 LCC 60 48.12 90.57 62.79 60.82 9.02
LAI 60 4.68 9.16 7.22 7.24 1.04

24 April 2024 LCC 60 45.44 97.36 63.43 62.91 10.13
LAI 60 6.25 11.30 8.58 8.38 1.07

27 May 
2024

LCC 60 42.85 125.15 59.90 56.63 14.75
LAI 60 4.31 9.60 7.22 7.51 1.27

Fig. 3. The equipment used to acquire UAV multispectral imagery i.e. (a) DJI Matrice 300 UAV, (b) Micasense RedEdge-P camera, and (c) MicaSense Calibrated 
Reflectance Panel.
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3.2.3. PROSAIL simulated spectra
The sensor settings related to the Micasense RedEdge-P with five 

bands that range from 475 nm to 842 nm (centre wavelength) were 
chosen. PROSAIL-simulated data samples were generated and stored in a 

lookup table (LUT) database in ARTMO. Studies have explored working 
with a variable range of simulation samples from as little as 250 up to 
50,000 in-order to find optimal samples that can be used for training the 
regression models to achieve a better retrieval performance [35,57]. It 

Fig. 4. Mean spectral reflectance of the 20 sweet potato varieties at matured stage extracted from the 27 May 2024 UAV image (at 120 days).

Fig. 5. A hybrid retrieval workflow showing the various phases of the methodology that were implemented in this study.
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was reported that, working with a large number of simulation samples 
(e.g. of 100,000 or more), potentially creates largely-redundant samples 
for regression [59].

In this study, PROSAIL-simulated data were generated containing a 
pool of small (1500) to large (9000) samples of synthetic canopy 
reflectance, in-order to assess their influence on LAI retrieval perfor
mance. This generated pool of simulated data was used for training the 
non-parametric regression methods (NPRMs) for retrieving the sweet 
potato LAI. Furthermore, there was an attempt to constrain the inversion 
process by using AL techniques (explained later) which ensured the se
lection of only the best possible samples from a pool of RTM-simulations 
for use by the NPRMs.

3.2.4. Non-parametric regression methods (NPRM)
This study evaluated two nonlinear NPRMs, widely used in the 

literature for estimating vegetation biophysical variables [58,60] 
namely: kernel ridge regression (KRR) and boosted regression trees 
(BRT). These methods were chosen in this study because: (i) of their 
ability to handle nonlinear relationships or high-dimensional data, (ii) 
they define the regression functions based on input data, and (iii) they 
can optimise the regression models by learning the training data [60].

The KRR is a supervised learning model that makes use of kernel 
functions for data analysis and pattern identification [22]. KRR is a 
family of the Least Squares Support Vector Machine Classifiers [52] 
which maps the training samples into a higher dimensional feature space 
and builds a regression function which represents a nonlinear regression 
in the original input space [48]. An optimal function would minimize 
the squared residuals and lead to improved biophysical variable 
retrieval. KRR in ARTMO software package required the tuning of the 

kernel function, regularization and optimization parameters. The opti
mization was carried out using the standard cross validation procedure.

On the other hand, BRT is a machine learning technique that com
bines decision trees with boosting methods, which helps to improve 
model accuracy [12]). Unlike random forests, which treat all data points 
equally when creating trees [2], BRT give more importance to data 
points that were previously mis-predicted, allowing the model to 
continuously learn and improve. This method is particularly useful for 
predicting environmental patterns, like species distributions or climate 
effects, because it accounts for complex interactions between variables 
[20]. The model’s accuracy depends on two key settings: tree 
complexity (tc), which determines how detailed each tree is, and 
learning rate (lr), which controls how much influence each new tree has 
on the overall prediction. A well-tuned BRT model usually requires at 
least 1000 trees for reliable predictions. It is especially useful when 
working with smaller datasets, as it can adjust and refine predictions 
more effectively over time.

3.2.5. Active learning techniques
AL techniques use selection criterion algorithms [38] to select 

informative samples from a large synthetic training database in-order to 
improve the model’s estimation accuracy [43]. The AL techniques used 
in this study falls under two main categories namely, uncertainty criteria 
algorithms and diversity criteria algorithms. The former, uses 
variance-based algorithms [16] to select from a large pool of samples, 
only the those with the least confidence. Whereas, the latter uses a va
riety of distance-related metrics [14,17,44] to select the most diverse 
samples and thereby disregarding the redundant samples from a pool of 
RTM-simulated reflectance samples. In particular, the uncertainty 
criteria algorithm used in this study was the Residual active learning 
(RSAL: [16]). RSAL applies the residual model to estimate the prediction 
error linked to each obtained prediction and ranks the different pre
dictions according to their estimated residual errors. A selection of the 
samples related to the predictions with the highest prediction errors is 
performed and are therefore, considered to be the most uncertain sam
ples that will not be considered in optimal final training set [59].

Furthermore, the diversity criteria algorithms used in this study were 
the Angle-based diversity (ABD: [14]), Euclidean distance-based di
versity (EBD: Douak et al. [17]) and Cluster-based diversity (CDB: [44]). 
The ABD algorithm measures the degree of diversity between samples in 
the initial training set (i.e. subset of n random samples) and those in the 
RTM-simulated database using the cosine angle distance. The samples 
with smallest cosine angles are ranked low because they represent 
samples (also referred to as reflectance-variable pairs) that are redun
dant and similar to those already accounted for in the training set. 
However, samples with the largest cosine angles are ranked high and 
added to the training set until it become optimal [8]. The EBD algorithm 
works similarly to ABD, however the difference is that EBD measures the 
degree of diversity by calculating the Euclidean distances [17] between 
the samples in the initial training set and those in the RTM-simulated 
database. Samples with the farthest distance are ranked high and 
added to the training set until it become optimal.

Another diversity criteria algorithm used was the CDB, which is a 
standard cluster based technique that applies the k-means clustering 
algorithm [26] to partition the initial training set into a series of labelled 
n clusters in the feature space. The number of clusters n, is set to the 
number of samples to add in each iteration of the algorithm [59]. The 
cluster centroid is determined for each cluster and thereafter, iteratively 
selects the nearest sample (from a pool of unlabelled synthetic samples) 
to the cluster centroid. Generally, samples within the same cluster are 
correlated and (in this case) characterised by minimal variable varia
tions that might produce virtually similar spectra. Therefore, the most 
informative samples within the clusters would be selected either based 
on their distribution and/ or level of uncertainty [14]. An improved 
version of the CDB algorithm couples the diversity measure with un
certainty analysis of the samples [44].

Table 3 
PROSAIL model parameterisation. Ave: average or mean, StDev: standard 
deviation.

Model 
parameters

Unit Range Distribution Source

Leaf parameters: PROSPECT-4 model
Leaf 

chlorophyll 
content 
(LCC)

[µg/cm2] 42.85 
− 125.15

Gaussian 
(Ave: 59.90; 
StDev: 14.75)

Field data

Leaf structure 
(N)

Dimensionless 1.5 – 2.5 Uniform Jacquemoud 
and Baret [24]

Equivalent 
water 
thickness 
(EWT)

[g/cm2] 0.03 Fixed Field data

Dry matter [g/cm2] 0.0062 - 
0.0145

Uniform Field data

Canopy parameters: 4SAIL model
Leaf area 

index (LAI)
[m2/m2] 4.31 - 

9.60
Gaussian 
(Ave: 7.22; 
StDev: 1.27)

Field data

Average leaf 
angle (ALA)

[◦] 50 - 80 Uniform Observation 
during field 
data collection

Hot-spot effect [fraction] 0.26 - 
0.48

Gaussian 
(Ave: 0.36; 
StDev: 0.05

Field data

Ratio of 
diffuse to 
downward 
irradiance

[fraction] 0.07 – 
0.22

Uniform Tongwane et al. 
[56]

Soil brightness Dimensionless 0.50 Fixed Soil brightness 
index on UAV 
bands [40]

Solar zenith 
angle

[◦] 0 Fixed Field 
observation 
during flight 
time

Sensor zenith 
angle

[◦] 0 Fixed UAV Gimble 
angle setting
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Last but not least, the Random sampling (RS) AL algorithm was used 
in this study. RS falls under diversity criteria algorithms and it is 
considered the most straightforward algorithm in that it gives every 
sample in the RTM-simulated spectra database equal probability of 
being selected. Basically, RS selects at random, a pre-defined number of 
samples within a large pool of unlabelled RTM-simulated spectra, and 
add them to the training set in-order to obtain an optimised training set

3.2.6. Evaluation of model prediction accuracies and performance of the 
AL algorithms

In this study, 60 field measurements of LAI were used for validation. 
In particular, the standard cross-validation method [51] was used to 
evaluate the retrieval performance of the NPRMs. In addition, 
cross-validation was used to evaluate the relative performance of the AL 
algorithms when applied to the NPRMs. During cross-validation in 
ARTMO, the LAI field dataset was randomly divided into k = 10 
equal-sized sub-datasets. We defined five iterative validation steps and, 
in each step, the k sub-datasets were used only once as a validation 
dataset for model testing. The hybrid retrieval performance of the 
NPRMs (with the integration of AL algorithms) was evaluated using 
statistical performance metrics such as the coefficient of determination 
(R2), root mean-squared error (RMSE), and relative root mean-squared 
error (RRMSE). These metrics are widely used in numerous studies 
involving the estimation of vegetation biophysical and/or biochemical 
parameters, for example Li et al. [35], Chakhvashvili et al. [6], Jay et al. 
[28], Duan et al. [18] and Chen et al. [7]. 

R2 = 1 −

∑(
eN

k − ek
)2

∑
(ek − ek)

2 (1) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

k=1(ek − mk)
2

n

√

(2) 

RRMSE =
RMSE

mk
× 100 (3) 

where mk is the observed biophysical variable i.e. LAI and ek is the model 
predicted biophysical variable i.e. LAI, mk, and ek denotes the respective 
means of observed and model predicted biophysical variables, n is the 
sample size, and N is the number of errors.

The R2 shown in Eq. (1) was computed for each model to measure the 
goodness of fit. This was followed by the computation of RMSE shown in 
Eq. (2) which indicate the amount of error expressed in the units of the 
biophysical variable of interest i.e. m2.m-2 for LAI. RMSE can range from 
0 to ∞ and a lower value (closer to 0), indicate an accurate model [5]. 
Additionally, the RRMSE shown in Eq. (3) was used to facilitate com
parison of model accuracies, where model accuracy was regarded as 
either excellent (RRMSE<10 %), good (10 %<RRMSE<20 %), fair (20 
%<RRMSE<30 %) or inadequate (RRMSE>30 %) [23,27,47].

4. Results

4.1. Analysis of the LAI and LCC field measurements

The field measurements across the 60 plots (Table 2), resembled an 
approximately normal distribution, which was inferred from the prox
imity of the respective mean and median values per variable. The 
standard deviations of the LAI and LCC show minimal increasing vari
ability of the sweet potato canopy from early to matured growth stage. 
The heterogeneity of the sweet potato varieties and the canopy in gen
eral, increased with different growing stages. The trend observed in the 
respective mean and range values of LAI and LCC suggested a positive 
phonological development of the sweet potato varieties. The current 
study focused on the peak growth stage, and thus the data used in this 
study was that of 27 May 2024 (Table 2). The aforementioned variability 
of field measurements is important when parameterising the PROSAIL 

RTM to produce synthetic reflectance samples that capture a broader 
range of the sweet potato conditions across the plots.

4.2. KRR retrieval performance of sweet potato LAI

The estimation of sweet potato LAI during the matured stage (in 120 
days) using KRR integrated with AL techniques showed varying accu
racies between the different RTM simulation samples (Table 4 and 
Table 5). In particular, the most accurate retrievals of LAI over the 
heterogeneous sweet potato canopy were achieved using a smaller pool 
(1500) PROSAIL simulations (Table 4) compared to the 9000 simulation 
samples (Table 5). Fig. 6 show that, each of the AL algorithms started 
with an initial training set of 15 random samples taken from a database 
of 1500 PROSAIL-RTM samples, and through numerous iterations, grew 
this set by adding informative (also referred to as smart or intelligent) 
samples until it became optimal with approximately 90 training 
samples.

The optimal samples led to adequate sweet potato LAI retrieval 
performance by KRR when integrated with the RS AL method. When 
KRR is used with optimised samples from the RS AL technique, the LAI 
retrieval accuracy reached an R2 of 0.52 and a RMSE of 0.88 m2.m-2. 
Additionally, the model prediction error was the lowest with a RRMSE of 
12.23 % signalling a good model accuracy. The second best retrieval 
accuracy was achieved again using smaller (1500) PROSAIL simulations 
when KRR is used with optimised samples from the EBD AL technique i. 
e. R2 of 0.45 and RRMSE of 12.95 % (Table 4).

Optimised samples derived from other AL techniques (such as the 
ABD, CBD and RSAL) applied to the 1500 PROSAIL simulations, yielded 
deteriorating LAI retrieval accuracies with R2 values ranging from 0.18 
to 0.22 and RRMSE values between 15.47 % and 16.74 %. A virtually 
similar trend is observed when LAI retrievals were attempted on 9000 
PROSAIL simulations (Table 5) thus signalling that, the integration of 
larger synthetic reflectance samples with KRR applied to UAV imagery 
may not provide an accurate LAI-based phenotypic assessment of mul
tiple sweet potato varieties at plot-scale.

4.3. Boosted regression trees retrieval performance of sweet potato LAI

The estimation of sweet potato LAI during the matured stage (in 120 
days) using BRT integrated with AL techniques showed varying accu
racies between the different RTM simulation samples (Table 6 and 
Table 7). While the BRT LAI estimation accuracies were generally lower 
compared to those associated with KRR, the results show that the most 
accurate retrievals of LAI over the heterogeneous sweet potato canopy 
based on BRT was achieved using smaller (1500) PROSAIL simulations 
(Table 6) compared to the larger i.e. 9000 simulation samples (Table 7). 
Fig. 7 shows that, each of the AL algorithms started with an initial 
training set of 15 random samples taken from a database of 1500 
PROSAIL-RTM samples, and through numerous iterations, grew this set 
by adding informative samples until it became optimal, with training 
samples ranging between 25 and 32. The optimization by AL techniques 
followed by the retrieval process using the BRT (or KRR) method 

Table 4 
The leaf area index (LAI) retrieval performance of kernel ridge regression (KRR) 
based on optimised training samples selected from a database of 1500 synthetic 
reflectance samples, using various active learning (AL) algorithms i.e. Angle- 
based diversity (ABD), Cluster-based diversity (CDB), Euclidean distance- 
based diversity (EBD), Random sampling (RS) and Residual active learning 
(RSAL).

Algorithm RMSE (m2.m-2) RRMSE ( %) R2

Angle Based Diversity [ABD] 1.21 16.74 0.18
Clustering-Based Diversity [CBD] 1.12 15.47 0.22
Euclidean Diversity [EBD] 0.93 12.95 0.45
Random Sampling [RS] 0.88 12.23 0.52
Residual Active Learning [RSAL] 1.14 15.86 0.20
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happened simultaneously.
The optimal samples led to a modest retrieval performance of the 

sweet potato LAI by BRT when integrated with the ABD AL method 
(Table 6 and Fig. 7). When the BRT is used with optimised samples from 
the ABD AL technique, the LAI retrieval accuracy reached an R2 of 0.50 
and a RMSE of 0.89 m2.m-2. Additionally, the model prediction error 
was lower with a RRMSE of 12.34 % signalling a good model accuracy. 
The second best retrieval accuracy by BRT was again achieved using a 
smaller PROSAIL database with 1500 simulation samples, where BRT 
was used with optimised samples from the CBD AL technique i.e. R2 of 
0.28 and RRMSE of 15.27 % (Table 6).

Overall, the sweet potato LAI retrieval by BRT based on the opti
mised samples derived from other AL techniques (such as the CBD, EBD, 
RS and RSAL) applied to the 1500 PROSAIL simulations, yielded low LAI 
retrieval accuracies with R2 values ranging from 0.19 - 0.28 and RRMSE 
values between 15.27 % - 16.05 % (Table 6). The sweet potato LAI 
retrieval by BRT showed further deteriorating accuracies (with R2 values 
ranging between 0.11 and 0.26 and RRMSEs’ in the range 15.84 % to 
18.03 %) when LAI retrievals were attempted on 9000 PROSAIL simu
lations (Table 7) thus signalling that, the integration of larger synthetic 
reflectance samples with BRT (similar to KRR) applied to UAV imagery 
may not provide an accurate LAI-based phenotypic assessment of mul
tiple sweet potato varieties at plot-scale. These findings suggest that, 
working with a large database of synthetic reflectance samples (e.g. of 
9000 or possibly more), potentially creates largely-redundant samples 
for modelling the LAI of multiple sweet potato varieties in the current 
study. However, using lesser PROSAIL simulation samples showed a 

better LAI retrieval performance in-terms of explained variability (R2) 
and model prediction error (RMSE and RRMSE) over 20 sweet-potato 
varieties and their replicates in the current study.

4.4. KRR spatial prediction of sweet-potato LAI

Fig. 8 shows the prediction map of sweet potato LAI, using the best- 
performing kernel ridge regression (KRR) model integrated with the 
Random sampling (RS) active learning (AL) method i.e. R2 of 0.52, 
RMSE of 0.88 m2.m-2 and RRMSE of 12.34 % (Table 4). In particular, the 
KRR model spatially predicted LAI values in the range of 0.20 – 12.8 m2. 
m-2 across the 20 sweet potato varieties at matured growth stage. This 

Table 5 
The leaf area index (LAI) retrieval performance of kernel ridge regression (KRR) 
based on optimised training samples selected from a database of 9000 synthetic 
reflectance samples, using various active learning (AL) algorithms i.e. Angle- 
based diversity (ABD), Cluster-based diversity (CDB), Euclidean distance- 
based diversity (EBD), Random sampling (RS) and Residual active learning 
(RSAL).

Algorithm RMSE (m2.m-2) RRMSE ( %) R2

Angle Based Diversity [ABD] 1.26 17.46 0.05
Euclidean Diversity [EBD] 2.71 37.53 0.10
Clustering-Based Diversity [CBD] 1.13 15.63 0.22
Random Sampling [RS] 1.13 15.63 0.20
Residual Active Learning [RSAL] 1.07 14.78 0.32

Fig. 6. Graphical representation of the R2 and RMSE for LAI retrieval performance by KRR when trained with optimised training samples selected from a database of 
1500 simulation samples by each of the five active learning (AL) algorithms.

Table 6 
The leaf area index (LAI) retrieval performance of the boosted regression trees 
(BRT) based on optimised training samples selected from a database of 1500 
synthetic reflectance samples, using various active learning (AL) algorithms i.e. 
Angle-based diversity (ABD), Cluster-based diversity (CDB), Euclidean distance- 
based diversity (EBD), Random sampling (RS) and Residual active learning 
(RSAL).

Algorithm RMSE (m2.m-2) RRMSE ( %) R2

Angle Based Diversity [ABD] 0.89 12.34 0.50
Clustering-Based Diversity [CBD] 1.10 15.27 0.28
Euclidean Diversity [EBD] 1.12 15.46 0.28
Random Sampling [RS] 1.15 15.98 0.19
Residual Active Learning [RSAL] 1.16 16.05 0.20

Table 7 
The leaf area index (LAI) retrieval performance of the boosted regression trees 
(BRT) based on optimised training samples selected from a database of 9000 
synthetic reflectance samples, using various active learning (AL) algorithms i.e. 
Angle-based diversity (ABD), Cluster-based diversity (CDB), Euclidean distance- 
based diversity (EBD), Random sampling (RS) and Residual active learning 
(RSAL).

Algorithm RMSE (m2.m-2) RRMSE ( %) R2

Angle Based Diversity [ABD] 1.16 16.13 0.18
Clustering-Based Diversity [CBD] 1.28 17.71 0.17
Euclidean Diversity [EBD] 1.17 16.18 0.18
Random Sampling [RS] 1.30 18.03 0.11
Residual Active Learning [RSAL] 1.14 15.84 0.26
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range is associated with the predicted LAI mean of 7.14 m2.m-2 and 
standard deviation of 0.91 m2.m-2. Most LAI pixel values i.e. about 81 %, 
were predicted to represent high sweet potato LAI in the range 7.0 – 12.8 
m2.m-2 which signals a largely healthy sweet potato canopy (Fig. 8). 
Furthermore, 15 % of the LAI pixel values were predicted to represent 
moderate sweet potato LAI in the range 5.0 – 7.0 m2.m-2 whereas about 4 
% of LAI pixel values were predicted to represent low sweet potato LAI 
ranging from the 0.2 – 5.0 m2.m-2 (Fig. 8). The above distribution of LAI 
pixel values is also seen in Fig. 9. The distribution of predicted LAI pixel 
values appears approximately Gaussian with a clear depiction of the 
dominant LAI range (Fig. 9).

Overall, the predicted full LAI range (0.20 – 12.8 m2.m-2) and pre
dicted mean (7.14 m2.m-2) approximated the actual field measured LAI 
range or minimum and maximum values of 4.31 – 9.60 m2.m-2 and 

actual field LAI mean of 7.22 m2.m-2 with moderately low differences 
(Fig. 8, Fig. 9, Table 2).

4.5. BRT spatial prediction map of sweet potato LAI

Fig. 10 shows the spatial prediction of sweet potato LAI, using the 
best-performing boosted regression trees (BRT) model integrated with 
the Angle-based diversity (ABD) active learning (AL) method i.e. R2 of 
0.50, RMSE of 0.89 m2.m-2 and RRMSE of 12.23 % (Table 6). In 
particular, the BRT model gave a spatial prediction of LAI values in the 
range of 2.65 – 9.32 m2.m-2 across the 20 sweet potato varieties at 
matured growth stage (Fig. 10). This range is associated with the pre
dicted LAI mean of 7.20 m2.m-2 and standard deviation of 0.84 m2.m-2. 
This result closely resembled the field LAI measured mean and range of 

Fig. 7. Graphical representation of the R2 and RMSE for LAI retrieval performance by the boosted regression trees (BRT) when trained with optimised training 
samples selected from a database of 1500 simulation samples by each of the five active learning (AL) algorithms.

Fig. 8. Spatial prediction of LAI during matured stage (in 120 days) over multiple sweet potato varieties using the best-performing Kernel ridge regression (KRR) 
model integrated with the Random sampling (RS) active learning (AL) method applied to drone imagery.
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7.22 m2.m-2 and 4.31 – 9.60 m2.m-2 (Table 2) and this could be an 
indication of a more realistic LAI map shown in Fig. 10 compared to 
Fig. 8.

Majority of the LAI pixel values i.e. ~65 %, were predicted to 

represent high sweet potato LAI in the range 7 – 9.3 m2.m-2 which sig
nals mainly a healthy canopy across the multiple sweet potato varieties 
(Fig. 10). In addition, 33 % of the LAI pixel values were predicted to 
represent moderate sweet potato LAI in the range 5.0 – 7.0 m2.m-2 

Fig. 9. Distribution of predicted LAI values from UAV imagery using the best-performing Kernel ridge regression (KRR) model integrated with the Random sampling 
(RS) active learning (AL) technique.

Fig. 10. Spatial prediction of LAI during matured stage (in 120 days) over multiple sweet potato varieties using the best-performing Boosted regression trees (BRT) 
model integrated with the Angle-based diversity (ABD) active learning (AL) method applied to drone imagery.
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whereas about 2 % of LAI pixel values were predicted to represent low 
sweet potato LAI ranging from the 2.65 – 5.0 m2.m-2 (Fig. 10). The 
distribution of LAI pixel values predicted by the BRT model is presented 
in Fig. 11 which suggests a bimodal distribution. The BRT model was 
able to capture well the variability of LAI, particularly between mod
erate and high sweet potato LAI across the canopy. Low LAI pixels are 
hardly visible on the predicted map.

Although, the comparison of model performance metrics in Table 4 
and Table 6 showed KRR was slightly superior to BRT. However, when it 
comes to spatial prediction of LAI, the BRT model gave a more realistic 
spatial representation of predicted LAI across the multiple sweet potato 
varieties.

5. Discussion

This study successfully tested the integration of active learning (AL) 
optimization and non-parametric regression methods (NPRMs) with 
PROSAIL radiative transfer models (RTMs) applied to a 2-cm resolution 
UAV imagery, to retrieve leaf area index (LAI) at plot-scale over 20 
sweet potato varieties during a matured growth stage. The results 
demonstrated that the NPRMs, particularly the kernel ridge regression 
(KRR) and boosted regression trees (BRT) have the potential to achieve 
accurate retrievals of sweet potato LAI when trained using a small pool 
of synthetic samples i.e. 1500 of RTM reflectance data over the het
erogeneous canopy comprising 20 sweet potato varieties. These findings 
suggest that, working with a large database of synthetic training samples 
(e.g. of 9000 tested in this study), potentially creates largely-redundant 
samples for modelling the LAI of multiple sweet potato varieties in the 
current study. A similar observation was made in other studies (e.g. [35,
37,57,59]). For example, Li et al. [35] tested a number of 
PROSAIL-based reflectance training samples ranging from 1000 up to 
50,000 and found that only 10,000 samples yielded the desirable esti
mation accuracy of LAI potato varieties. Furthermore, Ma et al. [37] 
added that the adequate training sample size required to give accurate 
retrieval of vegetation traits such LAI and canopy chlorophyll content 
(CCC), would vary based on growth stage and the crop variety of interest 

linked to their field-based growth parameter(s) required to parameterise 
the RTMs.

The LAI retrieval performance by KRR and BRT integrated with AL 
methods over 20 sweet potato varieties at peak growth stage was 
virtually similar. The best performing model by KRR integrated with the 
random sampling (RS) AL technique achieved a moderate R2 value of 
0.52 (Table 4) suggesting that, this model could explain or capture about 
52 % of LAI variability across the heterogeneous sweet potato canopy at 
a plot-scale. Additionally, this model had the lowest prediction error 
based on the achieved RMSE and RRMSE values of 0.88 m2.m-2 and 
12.23 % respectively (Table 4). On the other hand, the best performing 
model by BRT integrated with the angle-based diversity (ABD) AL 
technique achieved a moderate R2 value of 0.50 (Table 6) which indi
cated that this model could explain about 50 % of LAI variability. This 
model had a relatively low prediction error based on the achieved RMSE 
and RRMSE value of 0.89 m2.m-2 and 12.34 % (Table 6). The LAI pre
diction errors of both the KRR and BRT models, fell within the accept
able range which is representative of a better LAI prediction model i.e. 
0.5 m2.m-2 ≤ RMSE < 1.0 m2.m-2 according to Richter et al. [47]. 
Although, the relative performance between the KRR and BRT models 
showed very small differences, the spatial prediction results suggest that 
BRT gave a better prediction map of LAI than KRR (Fig. 10). The BRT 
model was able to capture well the variability of LAI, particularly be
tween moderate and high sweet potato LAI across the canopy at a 
matured growth stage.

While both KRR and BRT can handle nonlinear relationships be
tween variables, the KRR appeared to give better regression model ac
curacy (Table 4) than BRT (Table 6). On the other hand, BRT gave better 
and more realistic spatial prediction of sweet potato LAI (Fig. 8) 
compared to KRR (Fig. 10). In particular, BRT had predictions of the 
mean LAI as well as the minimum and maximum LAI range that were 
closest to the LAI field observations. This comparative performance 
between KRR and BRT could be attributed to large number (1500 and 
9000) of simulations samples used for regression. For example, the 
algorithmic strengths of BRT is its ability to deal with large complex and 
noisy datasets to achieve optimal performance [20], whereas in 

Fig. 11. Distribution of predicted LAI values from UAV imagery using the best-performing Boosted regression trees (BRT) model integrated with the Angle-based 
diversity (ABD) active learning (AL) technique.
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instances where there is small-to-medium sized datasets with smooth 
relationships, the KRR may give better predictive accuracies. However, 
KRR’s prediction accuracy can deteriorate with large or noisy datasets or 
large datasets with redundant samples e.g. RTM data [22].

There are very few studies based on empirical or statistical modelling 
approaches using LAI as a proxy for understanding the morphological 
and/or physiological characteristics of the sweet potato varieties at 
different growth stages. For example, Delazari et al. [13] used field and 
lab-based measurements of two sweet potato cultivars across four 
phonological stages based on plant growth periods to model the func
tional relationship between sweet potato morpho-physiological param
eters (such as, LAI, leaf chlorophyll index and leaf temperate) and 
growth. In particular, the LAI was found to be key parameter in 
explaining how the variation in soil moisture and water depth influence 
the growth performance of the sweet potato cultivars. In another similar 
study, Laurie et al. [33] evaluated the growth performance of four 
orange-fleshed sweet potato varieties under three different irrigation 
treatments. Results showed that variation in levels of irrigation had a 
direct impact on sweet potato canopy development, and therefore, this 
was quantitatively expressed in the LAI values. Furthermore, there is a 
notable steady increase in studies that use empirical or statistical ap
proaches to model sweet potato yield estimates and also to explore how 
external variables affect the shape and size properties of sweet potatoes, 
as these are important in determining grade and monetary value ([1,3], 
Liu et al. [36], Tedesco et al. [54], Tedesco et al. [55]).

In this study, an older version of the PROSPECT RTM model i.e. 
PROSPECT-4 [24] coupled with the SAIL model were used to model the 
spectral variation of sweet potato canopy reflectance, and also to 
generate simulated reflectance of varying sample sizes used for training 
the regression models. The parameterization of the aforementioned 
RTM models was largely based on field acquired input data, and less on 
assumptions and borrowed-values based on literature. This approach 
has been shown in other studies to improve model accuracy, including 
the use of more recent versions of the PROSPECT model such as 
PROSPECT 5 and PROSPECT-D, and incorporating lab-based derived 
measurements such as carotenoids and anthocyanin into the parame
terization of PROSAIL [35,50]. The use of more recent versions of the 
PROSPECT model in the current study, which requires more input pa
rameters such as carotenoids and anthocyaninin, are worth testing to 
improve the obtained results. Given the excessive costs associated with 
field data collection in order to obtain extensive training sets, RTMs 
have minimum reliance on in-situ data (Goel [21]) and are known to be 
robust and transferrable. In particular, RTMs use the physical laws to 
accurately describe the spectral variation of canopy reflectance as a 
function of viewing and illumination geometry, canopy, including leaf 
and soil background characteristics [11]. Therefore, the AL-RTM hybrid 
retrieval approach presented in this study could potentially be trans
ferred to other sites with virtually similar environmental setting and 
target variables of interest (i.e. similar sweet potato varieties at matured 
growth stage). Relative to RTMs, empirical approaches on the other 
hand, are site specific and require abundant field (training) samples. 
Thus, the transferability of empirical models to other locations remains a 
challenge [30].

Based on reviewed literature thus far, the current study is the first to 
explore the integrated use of RTMs with machine learning and AL al
gorithms on UAV imagery for the estimation of LAI over a heterogeneous 
sweet potato canopy i.e. comprising 20 varieties during a single growth 
stage. Our findings have significant implications for: (i) sweet potato 
breeding programmes critical for developing new cultivars in South 
Africa and (ii) small to large scale farmers in obtaining accurate maps of 
sweet potato biophysical variables, which are essential for assessing and 
monitoring crop growth at different stages.

6. Conclusion

This study found that, using lesser PROSAIL simulation samples 

showed a better LAI retrieval performance in-terms of explained vari
ability (R2) and model prediction error (RMSE and RRMSE) over 20 
sweet potato varieties and their replicates. Although, the retrieval per
formance between the kernel ridge regression (KRR) and boosted 
regression trees (BRT) models showed very small differences, the spatial 
prediction results suggest that BRT gave a better prediction map of LAI 
than KRR. The BRT model was able to capture well the variability of LAI, 
particularly between moderate and high sweet potato LAI across the 
canopy at a matured growth stage. Overall, these findings suggests that, 
the integration of BRT with the angle-based diversity (ABD) AL tech
nique based on UAV multispectral imagery may have the potential of 
generating sweet potato LAI maps which are critical for phenotypic 
assessment of multiple sweet potato varieties at different growth stages.

The methodological approach presented in this study can be applied 
to other crops (such as maize, potato, wheat, beetroot and sunflower) to 
retrieve their biophysical variables such as LAI and Chlorophyll at 
different growth stages using UAV or satellite imagery. However, the 
parameterisation of the PROSAIL RTMs and performance of the 
regression models may differ across different growth stages. Based on 
the universal notion that RTM models are transferrable between sites, 
the best performing model for LAI retrieval reported in this study can 
potentially be transferred to other sweet potato fields for (i) identifica
tion and monitoring of crop growth and health status, (ii) identifying 
variations in-terms of genotypes and management practices (irrigation 
and fertilization), and (iii) genotype selection and adaption assessment 
in breeding programmes.
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the retrieval of terrestrial vegetation bio-geophysical properties–A review, ISPRS J. 
Photogramm. Remote Sens. 108 (2015) 273–290.

[59] Jochem Verrelst, Sara Dethier, Juan Pablo Rivera, Jordi Munoz-Mari, 
Gustau Camps-Valls, Jose Moreno, Active learning methods for efficient hybrid 
biophysical variable retrieval, IEEE Geosci. Remote Sens. Lett. 13 (7) (2016) 
1012–1016.
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